
n .. . , <

*NASA TECHNICAL NOTE

N
0
d
I

n
z c
4
r/l
4

lilf

- N A S A

I

- TN D-5402

.

FORTRAN PROGRAM FOR MACHINE
COMPUTATION OF GROUP TABLES
OF FINITE GROUPS

by Gubriel Al len, David D. Euuns, und P d d Swigert
f

Lewis Reseurch Center
CZeueZund, Ohio

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D . C. S E P T E M B E R 1969

ERRATA * , I , ..
NASA Technical Note D-5402

FORTRAN PROGRAM FOR MACHINE COMPUTATION OF
GROUP TABLES OF FINITE GROUPS

by Gabriel Allen, David D. Evans, and Paul Swigert
September 1969

The tables on pages 9 to 18 should be replaced with the attached tables. p

NASA-Langley, 1910 Issued 4-17-70

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546

OFFICIAL BUSINESS FIRST CLASS MAIL

NATIONAL AERONAUTICS AND
POSTAGE A N D FEES PAID

SPACE ADMINISTRATION

mSTMAS+ER:. If Undeliverable (Section 156
Postal Manual) Do Not Return

TECH LIBRARY KAFB. NM

FORTRAN PROGRAM FOR MACHINE COMPUTATION

OF GROUP TABLES OF FINITE GROUPS

By Gabriel Allen, David D. Evans, and Paul Swigert

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
~. ~~~

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - CFSTI price $3.00

ABSTRACT

A FORTRAN program has been written for machine computation of group tables for
finite groups. The listing presented is for use on the NASA Lewis Research Center
IBM 360-67 and is machine dependent. The use of the method depends on the fact that
every finite group of order n is isomorphic to some subgroup of the symmetric group
Sn. The procedure for using the program is as follows: After the proper ismorphism
has been established, the appropriate elements of Sn are entered into the program as
input data. The program computes and prints out the group table for these elements of
Sn. Then the translation is made from the Sn elements back to the original group ele-
ments. Two examples are shown: One is the entire group S4, and the other is A5, the
even permutation subgroup of S5.

c

ii

FORTRAN PROGRAM FOR MACHINE COMPUTATION

OF GROUP TABLES OF FINITE GROUPS

by Gabriel Allen, David D. Evans, and Paul Swigert

Lewis Research Center

SUMMARY

A FORTRAN program has been written for machine computation of group tables for
finite groups. The listing presented is for use on the NASA Lewis Research Center
IBM 360-67 and is machine dependent. The use of the method depends on the fact that
every finite group of order n is isomorphic to some subgroup of the symmetric group
Sn. The procedure for using the program is as follows: After the proper isomorphism
has been established, the appropriate elements of Sn are entered into the program as
input data. The program computes and prints out the group table for these elements of

Then the translation is made from the Sn elements back to the original group ele-
~ 'n.

ments. Two examples are shown: One is the entire group S4, and the other is A5, the
even permutation subgroup of S5.

INTRODUCTION

Because of the sheer computational labor involved in constructing group tables for
large finite groups, the possibility of programming such tasks for machine computation
is very appealing. However, group multiplication cannot be carried out on a machine by
simply inserting an * between two elements of a group. A machine program for com-
puting group tables is actually more closely related to some of the programs recently
devised for proving mathematical theorems and algorithms than to ordinary arithmetic
programming (refs. 1 to 3).

All of these programs, however, require the group table to be fed in as input, after
which the group can be manipulated in any of several ways to extract the desired infor-
mation about its structure and properties (ref. 3). It appears that the published litera-
ture still does not contain a specific program that begins only with group elements as in-
put and then constructs actual group tables (see ref. 4 for an up-to-date survey of corn-

puters in group theory). Since such a program would be very useful to anyone working +,

with large finite groups, a program has been devised for constructing a group table o r
any subsection of such a table for the symmetric group Sn. This machine-dependent
program, which is written in H level FORTRAN for the NASA Lewis Research Center
IBM 360-67, uses as input only the group elements in the form of cycles. As is well
known, every finite group of order n is isomorphic to some subgroup of Sn (ref. 5).
Therefore, a table for any finite group G can be obtained from the table of the appro-
priate symmetric group once the isomorphism between the elements of G and those of
the subgroup of Sn has been given.

program. Therefore, a subroutine which stores four 8-bit words in a single 32-bit
storage location is used to gain more storage. This procedure is referred to as "pack-
ing" the storage locations.

Core storage limits the size of the multiplication table which can be handled by the

Examples of output for S4 and A5 (the alternating group on five letters) are pre-
sented.

DEFINITIONS AND CONVENTIONS

The entire report makes use of properties of the permutation group Sn. An ele-
ment of the permutation group represents a rearrangement of a number of labeled ob-
jects among a number of labeled locations. To begin with, each object is assumed to he -
in the location which bears the same label as the object. The term standard configura-
tion (SC) is used to describe that arrangement in which the ith object is in the ith lo-
cation for i = 1 to N, where N is the number of objects and/or locations. When
N = 3, for example, SC means

?

Location

Object

Every group element in Sn can be written as a product of cycles. A cycle is a
shorthand notation which describes the number and nature of changes effected by a given
permutation. For example, the cycle (1,3,2) indicates-that objects 1, 2, and 3 are to
be permuted in some manner and that all other objects are to remain fixed. The nota-
tion is so economical that it cannot describe the nature of the permutation without some
additional convention. Even though these conventions are well known, they are described
here for convenience.

.
c

2

If the individual numbers or letters in each cycle are called units, then a unit may
signify either a location or an object. Secondly, the convention may be adopted of going
from left to right or from right to left within a cycle, so that there are four choices al-
together. There are only two independent choices, however, since moving objects to the
left must result in the same distribution of objects among locations as moving locations
to the right and vice versa. The convention used here is that in which the units denote
objects and each unit is moved to the location currentlyoccupied by the unit to its left.
An example should make this clear. Consider the effect of operation (1,3,2). When it
operates on the SC, the result is

c

N

When (1 ,3 , 2) operates on the configuration on the right side, the result is

An interchange of two units is called a transposition. A property of permutations
- which is very useful in programming group operations is that any permutation can be

obtained by successive transpositions. For example, (1,2,3) = (1,2)(2,3). Therefore, a
product of two group elements can be expressed as a single chain of transpositions. An
examination of the result of this chain on the SC can then show the single group operation
which would yield the same rearrangement. This group operation is then the product of
the two original operations. The preceding few sentences are the heart of the method
used herein.

USE OF CLASS ALGEBRA TABLES

It is clear that, in the case of large finite groups, even the group table itself is d i f -
ficult to use because of the sheer physical size of the table and the inherent difficulty of
accurately locating the proper entry in a given row and column. It so happens that for
most groups there is a useful way of breaking up the group table into smaller blocks
which provides important information about the gross structure of the group. This
method is simply to break up the group into what are called class product blocks. Let
Ki denote the set of group elements in the ith class of group G. Then KI * KJ is

d

4

3

L

called the (IJ)th class product block. Such a block is the table of group multiplication of
all the elements of the Jth class used as column headings by all the elements in the I th

class used as row headings. The resulting gross structure of the group can be sche-
matically summarized in the class algebra table (ref. 6) for the group.

*

A very simple example of such a breakup can be shown here by considering S3. It
has two classes in addition to the trivial class KO, which consists entirely of the identity
element E. Class K2 is defined here as the collection of cycles of length three. Thus,
K2 consists of the two group elements (1, 2,3) and (3, 2, 1). The collection of two-unit
cycles (or transpositions) makes up the third class. Thus, K3 consists of the elements
(1, 2), (1,3), and (2,3). Therefore, the gross structure of the 36 entry group table for
S3 can be shown by the nine-element class algebra table:

KO KO K2 K3

K2 K2 =o + K2 =3

K3 K3 2K3 3K0 + 3K2

In examining this table, it should be noted that an entry such as 3K0 + 3K2 in the class
product block (33) means that, in this block, every element in class K2 and in class
KO appears exactly three times.

consist merely of the three classes themselves. Since, for any two classes Ri and K
Ki * Kj = Kj * K. all the additional information about the gross structure of S3 can be
obtained from the three class product blocks K2 * K2, K3 * K3, and K2 * K3.

The five class product blocks KO * KO, KO * K2, KO * K3, K2 * KO, and K3 * KO
j’

1’

Examples

Before examining the output of some actual cases, it should be noted that the form
in which these tables appears is slightly more efficient than the conventional group table. ~

A conventional group table for a group of order n containing the group elements
E, g2, . . . , gn has the form

4

E

82

gn

E g2 . . . gn

E . . . gn

82 X . . . X

. . .

gn X X

The first row and first column merely repeat the row and column headings and are, in a
sense, redundant. The form of the tables in this program omits the first row and first
column of the group table. Of course, the entries still "appear" on the page, but only
as row or column headings.

Example 1 - S4. - This group is small enough so that the entire group table can be

.

printed out in a reasonable space. Therefore, the entire set of 24 group operations was

entered as data and the group table constructed. The output for this group follows.

5

EXAMPLE 1 - Sq

.

I e

Example 2 - A5. - The group A5 is the group oEeven permutations of S5. It is, -
therefore, a proper subgroup of S5. There are five classes of A5 including KO. The
elements of S5 which are expressible as five-unit cycles fall into two distinct classes of
12 group elements each. These will be cd!.ed K2 and K3. The 20 elements express-
ible as three unit cycles form a class called. K4, and the 15 elements which may be ex-
pressed as products of two independent transpositions (e. g. , (12) (35)) are in the class
Kg. One should not be confused by the fact that the 24 five unit cycles of S5 (which fall
into a single class of S5) fall into two c'lstinct classes in A5. It requires conjugation
by an odd permutation of S5 to take a;: t? .ement of K2 into K3 and vice versa. The
only group elements available for cora,ugation in A5 are the even permutations of S5,
and no conjugation of any element in K2 by such an even permutation can take this ele-
ment into K3.

Since A5 is of order 60, it is a good choice for breaking up the group table into
class product blocks. The program can readily handle such blocks. However, class
products do not have the closure property and elements can arise which are not included
in the input for either class in the class product block. Therefore, this example serves
to illustrate the warning that IDENT (see program description) has to be made long
enough to accommodate the longest chain of changes in locations which any element of the
full group can cause. Note, for instance, that whereas the class K4 consists of cycles
three units long, the class product block for K4 * K4 contains cycles five units long.
The following class algebra table is not readily available in the literature and was ob-
tained from the class product blocks computed by this program: -

F"
K2 12Ko + 5K2 + K3 + 3K4

K3 K2 + Kg + 3K4 + 4 K 5

K 2 + K3 + 3K4 + 4K5

12Ko + K2 + 5K3 + 3Kq

5Kz + 5K3 + 3K4 + 4K5

5 K 2 + 5K3 + 3 K 4 + 4 K 5

5 K 3 + 3 K 4 + 4 K 5

5KZ + 3K4 + 4K5

K4 5K2 + 5K3 + 3K4 + 4K5 5K2 + 5K3 + 3K4 + 4Kg 20KO + 5K2 + 5K3 + 7Kq + 8K5 5K2 + 5K3 + 6Kq + 4 K 5

I 5K3 + 3K4 + 4K5 5K2 + 3K4 + 4K5 5KZ + 5K3 + 6K4 + 4K5 15K0 + 5KZ + 5K3 + 3K4 + 2K5

Of course, the class algebra table only gives gross information about the structure
of the group. For example, although K2 * K4 = K4 * K2, both class product blocks are
needed since one cannot predict the details of block K2 * K4 from K4 * K2 o r vice
versa. Therefore, 'dl 16 nontrivial class product blocks were obtained and are shown
in the following pages.

8

EXAMPLE 2 - Ag

K 3 * K 3
GROUP 1112 .314 ,51

1 5 1 3 r l s 4 . I
1
I
I
I
1
I
I
I
I
1
I
t

21:

1 1
I1
11

11
1 1

3.5.1 I

9

K 4 * K 4
GKOUP 1 1.2.3.4r51

1
1
1
i
1
I
1
I
1
1
1

I

l I r L r 3) :
i 2 . 3 . 4 1 :
11.3.41:
1 1 . 2 . 4 1 :
(1 . 7 1 5 1 :

i 2 , 5 , 5 1 :
i 1 , 3 , 5 1 ;

12r4 .51 :
i 1 . 4 . 5 1 :

1 3 . 7 , 1 1 :
(3 .4951:

14.3.21:
1 4 , 3 * 1 1 :
i 4 . 2 , 1 1 :
1 5 . 7 , I i :
i 5 r J l l i :
15,3,?1:
1 5 . 4 ~ 1 1 :
15.4.21:
1 5 . 4 1 3 1 :

i 5 , 3 , l l
15.2.11:

151394.2.
15 .21314,
1 5 . 4 . 1 1
F

I 1
I 1

I

E
13.5.21

i5 .3 ,11 :
1 5 . 1 1 i 3 . 2 1
15.4.2.J.11
1 5 , 4 1 1 1
i 5 . J , 2 . 4 . 1 1
15,3 ,21
r

I

, I 1
1
I
I)
I1

I

I

1 ;
I
I

i 5 , 2 , 1 1 :

1

10

11.2113.41:
1 1 . ~ 1 1 2 . 4 1 :
1 1 , 4 1 1 2 , 3 1 :
1 1 s 2 1 1 3 ~ 5 1 :
Ilr~ll2,51:
I1 .5112.31:
I I . Z I l 4 r 5 1 :
11 .4112,51:
11 .5112.41:
i 1 . 3 1 1 4 . 5 1 :
1 1 , 4 1 1 3 , ~ ~ 1 :
11.5113.41:
12 .3114.51:

1 2 . 5 1 1 l . 4 1 :
12.4113.5I:

11.4112.51:
1~.4.2.5.lI

15.3 .21
i 2 & . 4 , 3 , 1 1

i 4 . 2 . 3 . 5 . 1 1

12,3 .5 .4 .11
1 3 . 4 . 1 1

1 2 . 5 1 i 3 . 4 1 :

E

13.1115.2I
15.1113.21

13.2115.41

11

.

I

GHOUP

5.4.21
4 . 3 . 5 . 2 . 1 I
Zrlll4r3l
4 . 1 1 (5 1 2 1 I

K2*K5
GRUUP I

1 4 . 1 1 1 3 r L I
i 3 s 5 r l l

12.1115.31

13

GHCUP 1 1 . 2 . 3 . 4 . 5 1
K 3 b K 4

1
11
1

1
1

1 5 . 3 . 2) :

K l U K 5

I

1 4 . 3 . 5 . 2 , I l

K 4 * K 3
LROUP l r L . 3 r 4 . 5 1

1 :

I
I

415 .21
?.4* I I
3 1 4 1 5 . 2 1 1 1

5 . 2 . 3 . 4 . 1 1
3 1 4 . 0

15

K 4 b K 5 ,

16

K5*K2

11.2.5.3.41:
1 5 , 4 * 2 1
14.3.2.5.1I

I

I
I

I
I

I 14.5.11

1:

1

' I :
I

1 :
I

I 1:

I

I

I
I

I
I

.

T.;ILlUD 1 1 . 2 , 3 , 4 . 5 1

: I I . 4 . 5 . 3 . L I : 15,3.1.4.21:
1 3 . 1 1 1 5 . 4 1 (3 r 2 . 5 r 4 . 1 1
I L . S r 4 . 5 1 1 1 12.5.11
(4 . 5 . 2 1 15.2114.31
1 4 r 3 . 1 1 1 4 . 1 1 1 3 ~ 2 1
l 4 . 2 ~ 3 r 5 . 1 1 14r5 .11
14 .1 l15 .21 14.3.5.2.11

I

15.1.2.4.31:
I s.5.21
14 .1115131

(4 .5 .21
1 3 r 5 r 4 . 2 . 1 1

1 5 . J . 2 , 4 , 1 I
1 3 . 1 1 1 4 ~ 2 1
1 5 r 2 1 1 4 r 3 1
1 5 . 4 ~ 3 . 2 . 1 1

I
1

I

I

.

I 1
1

.

'

18

PROGRAM DESCRIPTION

General Description

The program computes a group table for elements of Sn which are read in as a
series of column and a series of row operations in cycle notation. The general proce-
dure consists of the following steps:

(1) A set of K column operations and L row operations is read into the program.
(2) Each of these operations is broken down into its equivalent sequence of trans-

positions. Let the group operation P.. represent the (group) product of the ith row
operation Ri by the jth column operation C Then P.. will be stored as a long se-
quence of transpositions.

11
j. 4

(3) The SC is rearranged in accordance with the sequence of transpositions which

(4) The rearrangement is examined and a single group operation which effects the

(5) This single group operation is entered in the ith row and jth column of the

The manner in which the machine performs steps (2) to (5) is far from standard. For

represent P.. .

same rearrangement of SC is identified as the product Ri * cj.

group table array.

11

.
this reason, an illustrative example is carried through in some detail. The example
chosen is the entry in A5 corresponding to the group multiplication (14235) (521).

set of entries for the triply subscripted quantity SYMBOL(L, N, ") over the f u l l range
of the first subscript L for fixed N and M. Thus, { ANS(-, I1,12) } is the collection
of ANS(I,Il, 12) values with Ilth column and 12th row fixed and with I allowed to range
from its minimum to its maximum value.

For future reference, the notation { SYMBOL(-, N, M) } is used to denote a complete-

The notation [A1, A2,. . . ,An] is used to display the actual contents of an array.
This notation signifies that the content of the first storage location of the array is AI,
that of the second storage location is A2, etc.

An outline of the program, broken down into sections which perform recognizable
functions, follows. (The flow charts and listings in appendixes A and B contain more
detailed descriptions.)

Block 1 - set up constants. - The constants used in the program are given literal
names and are declared either INTEGER or LOGICAL in TYPE statements. All the sub-
scripted variables are dimensioned and allocated storage locations by the use of a
DIMENSION statement. A DATA statement is used to give literal names to the following
variables:

19

Variable Literal name Identification

LP L e f t parenthesis

E

R P Right parenthesis

CM Comma

BLK Blank

IDNT Identity element of group

Block 2 - read in DATA. - The data describing the group and the group operations
are read into the program. The labels to be assigned to the objects and to the locations
are read from the list for DENT which is limited to one card. It is read in with
FORMAT(80Al) and stored in INITAL(N) in the form bbbX, where b represents an
8-bit blank and X represents the 8-bit location in the 32-bit storage register in which
the integer from DENT is stored. This storing arrangement is accomplished by sub-
routine SQUEZ, which is described later.

Description of Input

The input cards are read in the following order:

First card TITLJ3 one card with FORMAT(80Al)

Second card IDENT one card with FORMAT(80Al)

Note that the input for DENT must be long enough to include the maximum number of
objects to be moved in any group operation. Thus, the list for DENT must be of the
form (A1, AZ, . . .An), where n is the subscript in Sn and Ai is any alphanumeric
symbol.

The next set of cards contains the ACROSS (column) operations. There can be as
many as four cards with FORMAT(80Al), and each operation is followed by a colon.

A blank card follows the preceding set. It is needed to signal the end of the ACROSS

The next set contains DOWN (row) operations. There can be as many as four cards

A blank card follows the preceding set. It is needed to signal the end of the DOWN

input.

with FORMAT(80A1), and again each operation is followed by a colon.

input.
The input for both ACROSS and DOWN operations is in cycle notation.
Several error checks are run on IDENT. These include checking the maximum

number of nonblank units (which is six in this version of the program), the presence ,of

20

blank spaces on the card, and the illegal use of parentheses.
The group elements themselves are read from the list for INPUT(J, K),, which is

also read in with FOFtMAT(80Al). The complete set of column operations is read first.
- The upper limit of this input is four cards followed by a blank card. Then the complete

set of row operations is read in. This set is also limited to four cards followed by a
blank card.

Example of Input - Class Algebra Block K2 * Kq of A5

K 2 *K4
(1,2,3,4,5)
(1,2,3):(2,3,4):(1,3,4):(1,2,4):(1,2,5):(1,3,5):~2,3,5):(1,4,5):(2,4,5):(3,4,5):
(3,2,1) : (4,3,2) : (4,3,1) : (4,2,1) : (5,2,1) : (5,3,1) : (5,3,2) : (5,4,1) : (5,4,2) : (5,4,3) :
Card 5 is blank.
~'(1,2,3,4,5):(1,2,5,3,4):(1,4,5,2,3):(1,4,2,3,5):(1,3,5,4,2):(1,3,4,2,5):
(5,4,3,2,1) : (5,2,1,4,3) : (5,4,1,3,2) :(5,3,2,4,1) :(5,3,1,2,4) : (5,2,4,3,1) :

Card 8 is blank.

Cards 3 and 4 are ACROSS (column) operations, and cards 6 and '7 are DOWN (row)
operations.

Block 3 - store each group operation as product of transpositions. - In this block, -
each group operation is decomposed into its equivalent product of transpositions and then
stored in PAIRS(1, NOP, K) (see appendix B). The 3rd subscript K is 1 or 2 according

~ to whether the operation is a column or row element, respectively. Thus, an entry in
PAIRS(& NOP, K) is the I unit of the NOP column (K = 1) o r row (K = 2) group ele-
ment.

th th

The example used herein is an entry in the K2 * K4 class product block of A5.
The input for this block, which was given in the preceding section, shows that the element
(521) was the 15 ACROSS (column) operation and therefore corresponds to K = 1,
NOP = 15. Before being stored in a PAIRS array, the element is considered to be of the
form (52)(21). The contents of {PAIRS(-, 15, 1) } is [5 2 2 11 or

th

PAIRS(1,15,1) PAIRS(2, 15,l) PAIRS(3,15, 1) PAIRS(4,15,1)
5 2 2 1

The element (14235) is the 4th DOWN (row) element, and it therefore corresponds to
K = 2, NOP = 4. The contents of the eight registers which constitute the complete
{PAIRS(-, 4,2) } array are [1 4 4 2 2 3 3 51.

Block 4 - set up arrays in standard configuration. - In &is block, a number of
standard configurations are set up. E NC and NR are the total number of column and
row operations, respectively, then Nc X NR SC's are set up. A given SC is set up by
storing the quantity bbbI in location ANS(1, II, 12) (see appendix B). For a fixed I1

- ~ _ ~ _ i

and I2, and SC is the complete set of ANS(I,Il, 12) over the ful l range of I (see example
in block 5).

It is very important to note the differences in the roles of the second and third sub-
scripts here and in PAIRS. In ANS, the second subscript always denotes' the Ilth colum
entry and the third subscript always denotes the 12th row entry. In PAIRS, on the other
hand, the third subscript is used to denote whether a row (K = 2) or a column (K = 1)
operation is involved. The second subscript labels which row or column. However, an
entry in PAIRS never mixes row and column operations: it refers either to one or to the
other, depending on whether the third subscript is 1 or 2.

Block 5 - perform group multiplication. - In this block, the indicated operations for
all the group products operation I2 * operation I1 (= P12, 11) are actually performed. The

, method used is to transpose successively units from the SC of { ANS(-, 11,12) } in accord-
ance with the indicated operation of { PAIRS(-, I1,l) } followed by the operation of
{PAIRS(-, 12,2) } . The way in which this is accomplished may be understood by following
the procedure on a single, complete { ANS(-, 11,12) } array.

The storage location ascribed to ANS(J, 11, 12) is considered to be the Jth location
of the SC. The quantity stored in ANS(J, 11, I2) is considered to be the "thing" which
moved to the Jth location as a result of the operation (operation I2 * operation 11) on the
SC. Schematically, upon entering block 5, the { ANS(-, Il,I2) } array is in the SC. Thus,
for A5, {ANS(-,Il,I2) } = [l 2 3 4 51.

Continuing with the example of (14235)(521), when K = 1, I1 = 15, and when K = 2,
I2 = 4. Therefore, { ANS(-, 11,12) } = { ANS(-, 15,4) } . The first rearrangement of the
SC of this ANS ar ray is the one effected by {PAIRS(-, 15,l) } . After being operated on
by PAIRS(-, 15, l), the { ANS(-, 15,4) } array is [5 1 3 4 21. After this rearrangement by
{PAIRS(-, 15,l) } , the 12th row operation { PAIRS(-, 4,2) } is brought into play. After
the two successive rearrangements effected by the two PAIRS arrays, the { ANS(-, 15,4) }
array is [1 4 5 2 31. This is the content of { ANS(-, 15,4) } upon leaving block 5 and en-
tering block 6.

~ _ _ ~

Block 6 - identification of single group product element. - In effect, the permuted
stored values in each ANS array leaving block 5 are examined and a determination is
made of the single group operation which would have permuted the SC to this final ANS
array in one step. It should be recalled that the permuted ANS ar ray which enters
block 6 is the result of the successive operations - operation I1 acting on the SC, fol-
lowed by operation I2 acting on this result.

The same final ANS array can always be obtained by the action of a single group op-
eration on the SC. In block 6, this single operation is determined and stored in { OUT(-,
11, I2) } . Thus, an array { OUT(-, 11,12) } represents the single group operation which
has the same effect on the standard ANS array (SC) as does the product of the two oper-
ations (operation 12 * operation 11).

22

In order to understand how the program makes the identification, reference may be
made to the contents of the { ANS(-, 15,4) } array upon entering block 6 . The content of
a given register of ANS is the same as the label of the location in the SC. Since, in the

- SC, the location and the object had the same label, an examination of the content of a
particular ANS register provides partial information about the rearrangement of two ob-
jects. Referring to the { ANS(-, 15,4) } array shows the content of register (2,15,4) to
be the integer 4. This means that object 4 now occupies the position originally held by ob-
ject 2. In cycle notation, this state is indicated by placing a 2 to the left of 4 - thus, 2,4.

The next step is to examine the contents of register 4. Since a 2 is found there, it
is clear that a simple transposition of objects 2 and 4 has occurred, so that one part of
the group element is the two unit cycle (24).

An examination of the content of register 3 will show a 5. This then leads to an ex-
amination of register 5. The content of register 5 is 3, so that another complete cycle
has been found. An examination of register 1 (which is actually made first) shows a 1 to
be there. This fact is correctly interpreted as evidence that object 1 has not moved,
and no 1 will appear in the group element. The examination of all the registers of
{ ANS(-, 15,4) } is now complete and the conclusion is reached that the two operation (521)

followed by (14235) is equivalent to the single operation (42)(53). Therefore, OUT(-, 15,4)
= (4,2)(5,3). This agrees with the entry in the table at the intersection of the column
headed by (521) and the row headed by (14235).

It would be confusing to examine group table which contained cycles representing
- the same group operation but written in a different way. Such cycles are called equi-

valent cycles. A trivial example would be a transposition. Thus, (24) and (42) certainly
represent the same operation. Less trivial examples are (123) and its cyclic permata-
tion (231) as well as (312). It should be noted that equivalent cycles cannot be con-
structed in this program. To understand this, it is sufficient to note two facts. First,
the configuration resulting from the operation of a given element of Sn on the SC is
unique. Since equivalent cycles represent the same group element, they all result in the
same unique final array. Therefore, two final ANS arrays leaving block 5 can only dif-
fer from one another if they are associated with two distinct group elements. Secondly,
block 6 follows the same procedure in examining each ANS array and in storing the find-
ings in the corresponding OUT array. Therefore, if { ANS(-, 11,12) } has the same con-
tent as { ANS(-, 13,14) }, then { OUT(-, 11,12) } is identical to { OUT(-, 13,14) } .

error messages are also contained here.

a word of 32 bits. SQUEZ packs four pieces of data in one storage word. It also elimi-

Block 7 - output and error messages. - In this block, the group table is listed. The

Subroutine SQUEZ. - The usual manner of storing data on the IBM 360 series is in

~ ~~ . .

23

nates extraneous blanks. Before calling SQuEZ an entry in the group multiplication
table would look like the following:

bbb(bbblbbb, bbbabbb, bbb3bbb)

After calling SQUEZ we have the following:

SUMMARY OF PROCEDURE

A FORTFUN program for use on the IBM 360-67 has been written for the computa-
tion of group tables for finite groups. Use is made of the efistence of an ismorphism
between any finite group of order n and some subgroup of the symmetric group Sn.
Those elements of S, which are isomorphic to the group of interest are fed into the
program as input data. The program then performs the group operations on these ele-
ments of Sn and identifies the products of these operations.

product of transpositions or simple interchanges of two objects. The program expresses
each element given as input data in this form and performs the indicated interchanges
for a group product of two such elements on a standrad configuration. The resulting
configuration is then identified with that configuration which a single group element would
cause if applied to the standard configuration. This group element is called the product
of the other two and entered in the row and column headed by the original two elements

The procedure is based on the fact that every element of Sn can be expressed as a -

Oi sn.
Two examples are shown worked out in the report. One of these is the complete

table of S4, the other is A5. For the latter, the class algebra table is presented. This
table, which is of interest in itself, does not appear to have been previously published.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, June 2, 1969,
124-09-12-01-22.

24

APPENDIX A

FLOW OF PROGRAM LOGIC

Initialize

variables

t
Block 2

1

Construct
INITAL
array

, I ,
(’”””> IDENT

ACROSS
operations

t
READ
DOWN in INPUT

Store
operations

operations array

25

0 Block 3 /e\ K = 1.2

number of symbols
in ACROSS opera-
t ions

number of symbols

I = 1, IE

TEMP = +- Yes TEMP blank =

1 No

0- of operation

1 No

er ro r

e r ro r in ACROSS
and DOWN

Y

Count ACROSS
operations; Count
DOWN operations;

0 Statement

No

26

/ Perform row \

Set up ANS
array in SC

column
operation on

J-K1, K1-2,. . . , 1

t
PAIRS (J, I 1 , U = L1

ANS(L l , I l , 12)

e" Statement

-(ANS array) operation on
resulting

7-
descending order
J=K2. K2-2,. . . , 1

PAIRS (J, I2,2) = U

9 Statement

tJ

F

+ Block 6
t

MAX i s largest
number of symbols
in any entry of
group table

I

1
MAX = 0

NOP1-Number of ACROSS

NOP2-Number of DOWN
operations

operations

t
DO 38

Il=l, NOPl
12.1, NOP2

1
Store left paren,
ANS(l , I l , I2) ,
and comma in
OUT(M, 11.12)
(M=l,2,3,
respectively)

1

1

JPR=O
J-3
K1= 1

KN array
= C023.. . N1

i” I= 1, N

r$ L= 1, N

ANS(K, 11,121
and comma in
OUT(M, 11.12)
(M-J+l,J+Z,
respectively)

28

entry in

KK.1, N

I

JRP = number
paren in of symbols in

particular entry
in group table

9 JRP = J

Store left paren,
ANS(K, 11, IZ),
and comma in
OUT(M, 11.12)
(M=J+l, J+2, J+3,
respectively)

I

5 29

I 1 I l l I I I I I I I

L

8 J = JRP

Yes

I

9 MAX = J

4 Statement

30

r

c", Block 7

INPUT
array

WRITE
IDENT

WRITE

blanks in

operations in

ACROSS
operations

blanks in

operations in
LINE array

1

DO 48
K= 1, K5

K5 = number of entries
in group multi-
plication table +

Store OUT
array in
LINE array

I

lement in

WRITE

array

6

31

SQUEZ(OUT, N)

12. BLK

I2 and BLK
are ha l f words

LOGICAL’l
L1(2), OUT(1).

L1(1), Ll(21, BLK1,
and OUT array
are U4 words
(1 byte long)

LU1) equivalenced
to 1st byte of I 2

LU2) equivalenced
to 2nd byte of I 2

DATA BLK, BLK l

Bit representation:
1st byte 2nd byte

ELK -1000000001)000100001

;i”o’\

I = l , M

b I 2 = 0

OUTII) A

c

t
J=J+1

Store I ‘
character in
Jth byte of
OUT array

I

J=J+1

32

‘.

of nonblank
character+l>total

No

x

Store blanks
in reminder
of OUT array -

1
- Statement

2

1

I
RETURN

END

APPENDIX B

LISTING

C
C
C
1

. .. .

t

C T R A N S P O S I T ICNS
C

C bLECK (3) STORES € A C H CPERATICIN I N PAIRS ARRAY AS A 'PRODUCT GF

DO 19 Kzl.2
NPAIR(lrK)=O
&UP= 1

: IPRh=O
CHAR=BLK
I I=C
GNE=.TRUE.
COMMA=,FALSE.
IE=NINPUT(K)
CO 16 I=l,IE
TEMP=INPUT(I,K)
I F (TEMP.EQ.ULK) GO TO 16
If (TE+lP.EQ.LP 1 G G TC 9

I F (TEMP.EQ.CM) GC TC! 11
I F (TEYP.€Q-CGL) GG T O 1 4

GG T C 1 5

IF (TEMP.EQ-KP) GC TC 10

C H A R = I S L L (R , C ~ A R) + I S ~ L (~ 4 , T ~ M P) '

9 IPRh=IPRK+l
C;NE=. TRUE.
I F (I P ~ N . L T . O . O K . I P R N . G T . 1) GO TU 57
GO T C 15

10 IPKK=IPRN-l
IF (.NOT.COMklA) Gt1 T O 5E
C O M V A = . F A L S E .
EN€= . T R U E .
I F (IPRN-LT.O.UR.IPRN,GT.l) GC T O 57
GU TC LZ

11 COYPA=.TRUFo
12 NPAIR(NCP,K)=~PAIR(NCPIK)+1

IF (LPAIH(NCPIK).GT-L~) GC TC 5 Y
I F (CI-AK.EC.BLK) GO TO 56
IJ=hPAIQ.(K0P,K)
PAIKS(IJ,hUPvK)=CHAR

.) I F (C h E I GU T U 13
" NPAIR(NOP.K)=hPAIR(N~P,K)+l
',, I J=hPA IFC (NOP K + P4IRSIIJ,hOP,K)=CHAR 1 3 CHAR=HLK

'GC TI1 15
ONE=.FALSE.

14 h'CP=NCP+l
I F (NOP.GT.24) 6 G T O 60
h'PAIR(NGP,K)=O

15 II = I I + 1

1 6 LONT I NUE
INPLT(II,K)=TEMP

hI&PUT(K)=II+l
I F (TNPUT(IIIK).NE.COLI GU T O 17
NOP=NUP-l

1 GC T O I d
'1 7 INPUT(II+l,K)=CCL

NCPA(K)=KGP
1 R I F INPATR(l,K).EQ-O) G 6 T C 1

19 CO N T I N U E

35

i .

C
C
C

BLOCK (4) S E T S UP A N S A R R A Y I h STAlriDARU F O R M OR CCNFIGURATION

2 0
t
C
C

21

22

2 3

24

25

26
27

FLCCK (5) PERFLRMS THE PRODUCT OPERATIONS

m

36

C '

C E F F E C T A S GLOCK (5)
t:. c BLbCK (6) I O E N T I F I E S TkE SINGLE GROUP ELEMENT WHICH HAS THE SAHE

2 8

29
3 0

a
3 1

" 3 2
33

3 4

3 5
3 6

3 7

3 3

37 .

C
C

BLOCK (7) SETS UP THE OUTPUT F O R M A T AND L i R I T E S ERRCR MESSAGES

3 9

f4 0

41

42

43

44
45

46

47

4 8

38

DC 41 K=1r2
J= 0
Jl=l
IE=AINPUTIK)
DO 40 I=lrIE
IF (INPUT(IrKIobiE.CCL) GO TC: 40
CX=I-Jl+l
CALL SQUEZ (II\;PUT(JltK) TMX 1
IF (MX.LE.MAX) G O TO 3Y
#AX=MX
Jl=KX+Jl
J=J+1

CCNTINUE
I F (J.EQ.kCPA(K)) 60 TO 41
CPNTIr\jUE
NC=32
FAX=WAX+l
kUM=NC/MAX-1

NINf J*K)=MX

IF INUM.LT.2) G Q T O 04
Fib!= (kOPl+NUK-l l/I\UM
k R I T E (6 ~ 6 7) (IDEKT(1 1 r I = l ,ID)
W R I T E (6 ~ 4 8 1 TITLE
Kl=l
DO 54 I = l r K b !
DG 4 2 t = 1 ~ 3 2
LINE(LI=BLK
L 1-RAX
EO 44 J=l ,NUN
Il=(I-l)*NUW+J
I F (Il.GT.NCP1) GO TO 45
KZ=r\;IN(I1 r l) + K l - L
DO 4 3 K=KlrKZ
Ll=L1+1
LIhE(Lll=INPUT(K*l)
L1=(J+l)*:MAX
Kl=K2+1

K3= 1

Ll=C
DO 46 L=lr32
LINE(L)=BLK
K ~ = ~ I N (1 2 ~ 2) + ~ 3 - 1

CRITE (6 ,691 LIKE

En 53 12=1,l~0~2

DC 47 K=K3rK4
Ll=L 1+1
L.INEILl)=lNPUT(KrZ)
K3=K4+1
Ll=WAX
CC! 51 J-lrNUM
Il=(I-lI+hUM+J
IF IIl.GT.NOP1) G O T @ 5 2
K5=NGUT(IlrI?)
IF (K 5 o F Q . O) G O T O 4 Y
DO 48 K=lrK5
Ll=L1+1
L I ~ E (L ~) = O U T (K I I L T I ~)
.GO T O 5 0

a

c

T

L

r

5 5

56

57

5 '7

6 0

61

6 2

6 3

h4

6 5
' 66

67
.- 6 iJ

or:
73
71
7 2

I 73
74
75
76
77
78

39

h

40

t

P REFERENCES
-

1. Norton, Lewis M. : ADEPT - A Heuristic Program for Proving Theorems of Group
Theory. PhD. Thesis. Rep. MAC-TR-33, Massachusetts Inst. Tech., Sept. 1966.
(Available from DM3 as AD-645660.)

2. Elspas, Bernard; Goldberg, Jack; Jackson, Charles L. ; Kautz, William H. ; and
Stone, Harold S. : Properties of Cellular Arrays for Logic and Storage. Sci.
Rep. 3, Stanford Research Inst. (AFCRL-67-0463, DDC No. AD-658832), July 1967.

3. Maurer, Ward D. : Computer Experiments in Finite Algebra. Comm. ACM, ACM, 9
598 (1968), vol. 9, no. 8, Aug. 1966, pp. 598-603, 643.

-

4. Cannon, John J. : Computers in Group Theory: A Survey. Comm. ACM, vol. 12,
no. 1, Jan. 1969, pp. 3-12.

5. Lomont, John S. : Applications of Finite Groups. Academic Press, 1959, p. 260.

6. Allen, Gabriel: An Efficient Method for Computation of Character Tables of Finite
Groups. NASA TN D-4763, 1968.

41

